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ABSTRACT 

We investigate martingales appropriate for use in complex Banach spaces 

in connection with the complex uniform convexity popularized by Davis, 

Garling and Tomczak. This brings us into contact with diverse concepts, 

such as: pseudo-convex sets, plurisubharmonic functions, conformal 

martingales, the Radon-Nikodym property, and the analytic Radon-Nikodym 

property. 

0. Introduction 

Martingales with values in a Banach space have been used to study the 

structure of Banach spaces. One example is the equivalence of convergence 

of Ll-bounded martingales and the Radon-Nikodym property [73. There are 

many other examples but convergence is the only one explicitly considered 

here. 

When a Banach space has complex scalars (as opposed to real scalars), the 

techniques used for its study may have to take that into account. I will 

be concerned here with martingales that are useful in spaces over the 

complex numbers. 

Here is a simple example of what is involved, taken from a paper by Davis, 
I 

Garling and Tomczak [6]. Let ~ = [0,i[ , with product measure. If 

w • D, write w I, w 2, ... for its components. Define the sequence (Xn) 

of random variables by: 

n 27 ic~ k 
(*) Xn(W) = ; fk (Wl, .... Wk_l) e 

k=l 

(where the fn'S are measurable and bounded). Then (X n) is a martin- 

gale of a very special form. If the fn'S have values in a Banach space 

E, then (X n) is a martingale in E. For example, take E = LI([0,1]). 

Then E fails Radon-Nikodym property. So there are Ll-bounded martin- 

gales in E that diverge. But in fact all Ll-bounded martingales in E 
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of the form (*) converge a.s. (see [2], Corollary 4.3). This paper arose 

as an attempt to understand this fact. 

The martingales (*) form an interesting class, but they are too limited 

for many purposes. For example, this class is not closed under optional 

sampling: if T 1 ~ T 2 ~ T 3 ~ ... is a sequence of (bounded) stopping 

times, Yn = XT is a new martingale. But if (X n) is of the form 
n 

(*), it does not follow that (Yn) is of the form (*). In this paper 

I am concerned with how the definition should be extended to have more 

useful permanence properties, but still to retain the convergence pro- 

perties exhibited by (*). 

The concepts that are used include some from the field of several complex 

variables (as might be expected, especially when the Banach spaces are 

finite-dimensional). But care must be taken in how the concepts are 

formulated. Generally, derivatives must be avoided; many of the Banach 

spaces of interest do not admit equivalent differentiable norms. So, 

for example, there is no way to define "the unit ball is strictly 

pseudo-convex" using derivatives. 

i. Preliminaries 

We begin with the finite-dimensional definitions. Let U be an open 

set in ~ . A function ~ : U ÷ [-~,~[ is called subharmonic on U 

iff ~ is upper semicontinuous and, for all x ~ U and all y £ ~ , if 

{x + ly : III ~ I} ~ U, then 

2~ 

f 
0 

de ~(x + ei@y) ~-~ > ¢ (x). 

Note that we have allowed ~(x) - -~ 

Let U be an open set in ~n, where n is a positive integer. A 

function ~ : U + [-~,~[ is called plurisubharmonic iff its restric- 

tion to each complex line in ~n is subharmonic. That is, if x, y c ~n, 

and @ : ~ ÷ ~n is defined by 8(I) = x + ly, then ~ o ~ is subhar- 

monic on 0-I[u3. 

Let U be an open set in ~n. Then U is called pseudoconvex iff 
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the function ~ : U ÷ [-~,~[ defined by 

(x) = -log dist (x, ~n \ U) 

is plurisubharmonic on U. We intend the distance in the Euclidean norm 

on {n, but an equivalent definition is obtained if any other norm on 

~n is substituted. 

Discussion of plurisubharmonic functions and pseudoconvex regions in {n 

can be found in many text on several complex variables. One discussion, 

which emphasizes the similarity to convex functions and convex regions 

in IR n has been given by Bremermann [3] 

It is natural to extend the definitions to infinite-dimensional spaces. 

(See, for example, [13]). 

Let E be a complex topological vector space. Let U be an open set 

in E. Then U is said to be pseudoconvex iff U n F is pseudoconvex 

for every finite-dimensional subspace F of E. A function ~ : U÷ [-%~[ 

is called plurisubharmonic iff ~ is upper semicontinuous and its 

restriction to each complex line in E is subharmonic. The last part 

can be rephrased as follows: If x, y c E and {x + ly : I II ! i} [ u, 

then 

2~ 
I i8 d8 

(x + e y) ~ _> ~ (x). 

0 

A topological vector space is called locally pseudoconvex (or locally 

holomorphic [i]) iff there is a base of balanced pseudoconvex neigh- 

borhoods of the origin. (See also [i], [14].) 

If U is an open balanced neighborhood of 0 and ~ is its Minkowski 

gauge, then the following are equivalent (see [i, p.40]): 

(a) U is pseudoconvex; 

(b) ~ is plurisubharmonic; 

(c) log ~ is plurisubharmonic. 

A quasi-norm on E is a function ~ : E ÷ [0,~[ satisfying: 

(Ix) = I ll~(x) for x c E, I E ~; ~(x + y) <_ E(~(x) + ~(y)) for some 
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constant K ; ~ (x) = 0 if and only if x = O. For example, if 

is a measure space, and 0 < p < ~, then 

Tlfll = (IlflP dn) I/p 

defines a quasi-norm on LP(~). lit is a norm if p ~ I.] 

(~,F,~) 

If E is a topological vector space whose topology is defined by a 

quasi-norm II'll that is uniformly continuous on bounded sets of E, 

then (E, II'II) is called a continuously quasi-normed space. 

According to [6], a continuously quasi-normed space (E, ll. II) is called 

locally PL-convex if and only if the function logll • II is plurisubhar- 

monic. Equivalently, the function II • IIp is plurisubharmonic for some 

(or all) p with 0 < p < ~, or the ball {x6E : llxll < I} is pseudo- 

convex. Such a space is certainly locally pseudoconvex. 

The most important class of examples for the present paper is the class 

of Banaeh spaces (E, II- II ). Then II " II is a convex function, and 

therefore plurisubharmonic by Jensen's inequality. 

A principle commonly used in (finite-dimensional) several complex vari- 

ables says that a region is pseudoconvex if and only if it is "pseudo- 

convex at each boundary point". We state here an infinite-dimensional 

instance of this principle. 

i.i PROPOSITION. Let (E, II • II) be a continuously quasi-normed space. 

Then E is locally PL-convex if and only if, for every x ° 6 E with 

IIXol I = i, there is a plurisubharmonic function ~ on E with ~(x O) = 1 

and ~(x) ~ llxll for all x. 

Proof. Suppose E is locally PL-convex, so that If" II is a plurisub- 

harmonic function. Take ~(x) = Ilxll. Conversely, suppose such func- 

tions ~ exist. We claim that If" II is plurisubharmonic. Let x o, 

Yo e E. If x ° 0, then 

2~ 

I ilxo 
0 

+ eieyol I de II 5> 0 -- 11x ° 

If X ° ~ 0, there is a plurisubharmonic function 9 with ~<xo/llxo11)= 1 
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and 0(x) _< I Ix l l  for all x, so 

2 r~ 2 
I i8 dO i x iO y ° Hx 0 + e Yoll ~-~ : JlXoJJ Jl o + e jj dO 

o o 11%11 llxoll 

2~ 
i x ie Yo 

_> JlXoJl ~( o + e --i 2-9d0 

o llxoll llxoll 

x 
llxoll ~( o ) = 11%11 

11%11 

This shows that N" JJ is plurisubharmonic, and therefore that E is 

locally PL-convex. 

The above Proposition may help explain the following definitions. Let 

(E, IJ'Jl) be a continuously quasi-normed space. Then Jl'll is strictly 

plurisubharmonic iff, for every x ° e E with lJXoJ j = 1 there exists 

a plurisubharmonic function ~ on E with ~(x o) = 1 and ~(x) < lJxll 

for all x ~ x o. Similarly, II'II is uniformly plurisubharmonic iff 

there is a continuous, increasing function h : E0,~ [÷[0,~[ , with 

h(0) = 0 and h(t) > 0 for t > 0, such that for every x e E with 
o 

lJXol I = i, there exists a plurisubharmonic function ~ on E with 

~(x o) = 1 and ~(x) i llxll - h(llx - Xoll) for all x { E. 

quasi-norm (]llflJPd~) I/p ~ on LP(~) is uniformly plurisubharmonic, The 

if 0 < p < ~ .(See Section 3, and compare with [6] and [14].) 

The reader may find it instructive to investigate whether replacing 

"plurisubharmonic" by "convex" yields conditions equivalent to strict 

convexity and uniform convexity. 

The definitions above were inspired by a definition of Davis-Garling- 

Tomczak [6]. They say that E is uniformly PL-convex iff there is a 

function h : [0,~[÷[0, ~[ with h(t)> 0 for t > 0, such that for all x o E E 
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2~ 

I ]Ix 0 + eiOy[I dO > i + h(Ily[l). 

o 

It is easy to see that this is true if [[']] is uniformly plurisubhar- 

monic. I do not know whether the converse is true; I expect that it is 

not. 

The goal of this paper is to discuss convergence of martingales. The 

class of martingales must be restricted (to obtain convergence in L I, 

for example). There are several possibilities for definitions; I have 

chosen one of them to use there. For simplicity, the discussion will 

be restricted primarily to the case of a separable Banach space E. We 

will write PSH(E) for the set of all plurisubharmonic functions on E. 

Similarly, PSH(V) is the set of all plurisubharmonic function on the open 

set V. 

Let ~ , o be probability measures on the Borel subsets of 

moment (i.e., ]llx[Id~(x) < ~, etc.). We say dominates 

> u [PSH(E)], iff 

E with first 

u, and write 

f~ dz _> f~du 

for all ~ e PSH(E). For x • E, we say ~ is a Jensen measure for x, 

and write ~ ~ x[PSH(E)] iff ~ dominates the Dirac measure ex' that is, 

I~ d~ _> ~ (x) 

for all ¢ ~ PSH(E). (See Gamelin [8] for discussion of Jensen measures 

in the finite-dimensional case.) 

One good example of ~ ~x[PSH(E)] is obtained as follows. If x,y • E, 

then the uniform distribution ~ on the circle x + el@y, 0 ! 0 < 2~ , 

represents x. That is, 

f2~ el8 d8 (x + y) ~ ~ ~(x) 
o 
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for all ~ (PSH(E). Another example can be obtained as follows. Let 

u be a probability measure in ~ and ~ ~ 0 [PSH(~)]. Suppose f : ~+ E 

is holomorphic. Then the image measure Z = f(o) represents f(0). 

The reason for this is that for any plurisubharmonic function ~ on E, 

the composition ~of is subharmonic on {. 

If Z is a Jensen measure for x, then of course the barycenter of 

x; i.e.,] y p(dy) = x. (If E is a separable Banach space, this is 

exists as a Bochner integral.) The reason is that the real and imaginary 

parts of a linear functional are pluriharmonic, so we get 

I f(y) ~(dy) : f(x) 

for all f e E . In general it is not enough to use only pluriharmonic 

functions in the definition of Jensen measures. Here is an example in 

one complex dimension, from [8]. The Poisson kernel 

p (e) = 
r 

2 
1 - r 

l-2rcosQ+r 2 

satisfies 

Po(e) = i, 

1 
min PI/2(@) = ~ , 

max PI/2 (8) = 3. 

Let the measure D on ~ be defined by 

1 1 
-- ~ al. 2/ + [i - ~ PI'2/ (6) IX , 

where dl = dO/2~ is Haar measure on the unit circle. Then ~ is a 

probability measure. If f is harmonic on the closed disk, then 

I I I [2 ~f (ei8 i d8 
fd~ = ~f(~) + )[i - ~Pi/2(8)] ~-~ 

~o 

i (})+ i (})= f(O) - ~ f f(0) - ~ f . 

So ~ represents 0 for all harmonic f. (In the language of Gamelin 
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[8], ~ is an "Arens-Singer measure" for 0.) But ~ is not a Jensen 

measure for 0. The function log]z I is subharmonic, but 

S 1 _ logl½1 =log1½-0T { logl  zl (dz) . . . .  

Finally, we turn to the definitions concerning martingales. A discussion 

of real-scalar martingales in a Banach space can be found in [7, Chapter 

V]. 

Let (9,F,P) be a probability space. We will write E[X] = [XdP for 

F the expectation if X is a random variable. Let ( n)n=0 be an 

increasing sequence of G-algebras contained in F, and let E be a sep- 

arable Banach space. If X n is an Fn-Bochner integrable random vari- 

able, X n : ~ ÷ E(n = 0,1,2,...), then we will say that the sequence (X n) 

is a PSH(E)-martingale iff, for every ~ • PSH(E), the real-valued 

process (~(Xn))n= 0 is a submartingale. Since the real part of a linear 

functional is plurisubharmonic, a PSH(E)-martingale is, in particular, a 

martingale in the usual sense. Another way to think of this is the fol- 

lowing: Given X n, the distribution of Xn+ 1 is a measure that dominates 

the point X in the sense defined above. It follows that the image 
n 

measures increase: Xo(P ) < XI(P ) < X2(P) < ... [PSH(E)]. 

A useful class of examples can be found in [6]. Suppose v n : 9 ÷ E is 

Fn_ 1 -measurable (n > 0) and v ° is constant in E ; ~n is uniformly 

distributed on [l • ~ : Ill = i}, o n is independent of Fn_ I, ~n is 

F -measurable. Then if v • LP(p,E), the process 
n n 

n 
= + Z ~_v_ Xn v° k=l K K 

is called an H -shrub in [6] and called an analytic martingale in [2]. 
P 

It can be seen that analytic martingales are PSH(E)-martingales. (The 

H -martingales defined in [6] are not used in this paper, since they 
P 

need not converge, even in LI.) 

There is a connection with the conformal martingales of Getoor and Shape 
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[i0]. If (X t) is a martingale in E with continuous trajectories, 

then according to Proposition 5.9 of [16], (X t) is a conformal martin- 

gale if and only if (~(Xt)) is a submartingale for any plurisubharmonic 

function where it makes sense. (Schwartz says these results "ne sont 

sans doute pas plus que des amusements".) But for discrete parameter 

martingales the situation is more complicated. In ~, there are martin- 

gales (Xn) such that (X~) is also a martingale, but (X~) is not a 

martingale. For example, X ° = 0, but X 1 = X 2 = X 3 ... and 

1 
P[X 1 = i] = 

1 
P[X 1 = -I] = 

1 
P[X 1 = i] = 

1 
P[X 1 = -i] = ~ • 

2. Martingale convergence 

In this section it is proved that PSH(E)-martingales, bounded in LI(E) - 

norm, converge a.s., provided the norm in E is uniformly plurisubhar- 

monic. Some remarks on relaxing this condition are included in Section 4. 

Throughout this section, (E, II" II) is a separable Banach space. Many of 

the assertions also hold in separable continuously quasi-normed spaces, 

or even non-separable spaces; but I will not spell that out here. 

2.1 LEMMA. Suppose ~ : E + [-~,=[ is upper semicontinuous and bounded 

above on bounded sets. Define ~o(X) = ~(x) and 

2~ 

~n+l(X) = inf {I 

o 

• . de 
~n(X + elOv) ~-~ : v • E} 

for n ~ 0. Then ~n decreases pointwise to the largest plurisubharmonic 

function less than or equal to ~. 

Proof. Taking v = 0, we see that ~n+l(X) < ~n(X), so ~(x) = lim~ (x) 
- -  1 " ] +  co i t  
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exists for each x ~ E. We will prove by induction that each 4 n is 

upper semicontinuous. First, ~o = ~ is upper semicontinuous. Suppose 

9n is upper semicontinuous, and consider Sn+l" For fixed x,v the 

map 8 ÷ ~n(X + eiSv) is bounded above and upper semicontinuous, hence 

2 ~ ' dO 
measurable. For fixed v, I claim that x ÷ 4n(X + el0v) ~ is upper 

o 

semicontinuous. Indeed, if x k ÷ x, then (by the upper semicontinuity 

of 9n ) we have limsuPk÷~ 4n(X k + eiev) ! 4n(X + eiSv) for all 8. Now 

this is bounded above, so by Fatou's Lemma 

12z . 12~ . limsup On(X k + elOv) dO ~-~ < limsup 4n(X k + elOv) dO 
k +~ - k ÷~ o o 

f2~ 
-< ~n(X + e 18v) dO2~ " 

o 

i2~ ' dO This shows that x + 4n(X + el@v] ~ is upper semicontinuous. So 

o 

~n+l is the infimum of a family of upper semicontinuous functions, so 

it is upper semicontinuous. This completes the induction. 

We next show that the limit 4 is plurisubharmonic. Fix x,v. Then by 

the monotone convergence theorem 

12~ ei8 dO = [2~ ' dO 0(x+ v) ~--~ lim 4n(X+ elSv) 
o n o 

_> lim ~n+l(X) = ~(x) 
n 

So ~ is plurisubharmonic. 

Next we show that ~ is the largest plurisubharmonic function S ~. 

Suppose 0" is any plurisubharmonic function ~ ~. Then ~ ~ 0 ° = ~. 

By induction we see that ~ ~ 4 n for all n, so 4" ~ 4. 

The construction in this lemma can be rephrased in terms of PSH(E)-mar- 

tingales. Suppose E is a separable Banach space, and ~, ~n,~ are as 
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in the Lemma. Then I claim that 

~n(X) = inf EE~(x n) ] , 

where the infimum is over all analytic martingales (Xk)k= 0n with Xo = x. 

The proof is by induction on n. For n=0, we have only X ° = x, so 

~o(X) = ~(X) = E[~(Xo) ]. Suppose the formula is known for n-l. Fix 

x ~ E and ~ > 0. Choose v so that 
o 

2~ eiG d8 s 
~n(Xo) _> ~n_l(Xo + v) ~-~ + ~ • 

O 

i8 
Let X 1 have the uniform distribution on the circle x ° + e v. Now 

choose measurably (by the Yankov-von Neumann selection theorem [12]) for 

k + e i8 v and each 0 an analytic martingale (Xk) :i with X 1 = x ° 

9n_l(Xo + e±Sv) _> EE~(Xn) 3 + [ • 

n 
Thus we have obtained (Xk)k= 1 conditionally on X I. Putting them 

together, we get (X)k= 0n with Xo = Xo, E[~(Xn)] + g j ~n(Xo )" 

2.2 PROPOSITION. Let E be a separable complex Banach space; let 

0 < p < ~; let h : [0, ~[÷[0, wE be increasing and continuous. Then 

the following are equivalent: 

(a) For every x ° c E with IlXol I = i, there is a plurisubharmonic 

@ : E ÷ [-~ , ~[ with ~(Xo) = 0 and for all x ~ E, 

$(x) _< II×II p - 1 - h(llx- xoll) 

(b) For every x ° e E with 11XoH : l, and every analytic martin- 

gale (X n) with X O = Xo, we have 

E E I IXn l IP3  2 1 + E [ h ( l l X  n - ~oll)~. 

(c) For every x ° e E with llXol I = i, and every Borel measure 

y on E representing x o, we have 
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llxll p dy(x) _> 1 + # h(llx- %11) dy(x) 

Proof. (c) => (b). If 

distribution 7 of X n represents x o. 

(X n) is an H -shrub with X ° = Xo, then the 

(a) => (c). Since ¢ is plurisubharmonic, we have [ ~dy _> ~(x O) if 

7 ~ x [PSH(E) ]. Thus 
o 

Ill xll p d~(x) _> I (~(x) + l + h(lix- xoll)) d~(x) 

_> 0 + l+ I h(llx- xoll) dy(x). 

(b) => (a). Fix x ° { with llxol[ = i. Define a function 4o by Co(X) = 

llxll p - 1 - h(llx- Xoll) . Then 4o is continuous and bounded on bounded 

sets. Let ~ be the largest plurisubharmonic function Z 4o. It remains 

only to show ¢(Xo) = 0. Now 9 = lim 9n' where ~ is as in Lemma 2.1. Since 
n 

~n(Xo) = 0, it suffices to show ~n(Xo) ~ 0 for all n. But ~n(Xo) = 

inf E [~o(Xn)], where the infimum is over all analytic martingales 

(Xk)k= 0n with Xo = Xo. By (b), we have E[~o(Xn)] = E[IlXn Ilp-l-h(llXn 

- xoll)3_> o .  

According to this proposition, If" II is uniformly plurisubharmonic if 

and only if there is an h with h(t) > 0 for which (a), (b), (c) hold 

with p=l. It may be useful to note that "uniform PL-convexity" of [6] 

can be rephrased as follows: There is h:[0, ~[+[0, ~[, increasing, con- 

tinuous, h(t) > 0 for t > 0, such that for every x ° e E, llXol I = i, 

1 with X = we have E[[IXIIIP]k and every analytic martingale (Xk)k= 0 o Xo' 

i + E[h(IIX 1 - Xoll)] . In fact, if this holds for one value of p (0<p<~), 

then it holds for all. 

The conditions in Proposition 2.2 are not changed if an exponent i/p 

is added, as in the following. 

2.3 PROPOSITION. Let (E, II-II) be a continuously quasi-normed space, and 
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0 < p < ~. Then the following are equivalent: 

(a) There is a function h : [0, ~[÷[0, ~[ , increasing, continuous, 

h(t) > 0 for t > 0, such that for all x O e E with llXol I = 1 and 

all measures y ~ x o, 

xllPd~(~) > 1 + I h(llx- ~olI) dy(x) 

(b) There is a function k : [0, ~[÷ [0, ~[, increasing, continuous, 

k(t) > 0 for t > 0, such that for all x ° e E with llXol I = 1 and all 

measures y ~ x o, 

cI11xllP d Ixlll/P > i ÷ I k<llx  olll dy(x) 

Proof. If p ~ 1 and (a) holds, let k(t) = (I + h(t)) I/p - i. If 

p Z 1 and (b) holds, let h(t) = pk(t). If p < 1 and (a) holds, let 

k(t) = ph(t). If p < 1 and (b) holds, let h(t) = (i + k(t)) p - i. 

The verifications, involving Jansen's inequality and Bernoulli's inequal- 

ity, are omitted. 

The following martingale convergence theorem is now easy to prove. 

2.4 THEOREM. Let (E, ll. il) be a Banach space; suppose II'II is uniform- 

ly plurisubharmonic. Let (X n) be a PSH(E)-martingale; suppose sup 

E[llXnl i ] < ~. Then X n converges a.s. 

Proof. Since all of the X are Bochner integrable, we may assume E 
n 

is separable. We begin with (c) of Proposition 2.2: There is a function 

h with h(t) > 0 for t > 0 such that if llXol I = 1 and y ~ x o 

[PSH(E)], then 

xlld~(x) _> I + I h(]Ix- XoIl)d~{x). 

From this follows, for x ° c E, x ° ~ 0, that if y ~ Xo[PSH(E)] , then 

I[I xlld~(x) _> llxoll + [I~oII I h( 
llx- Xol I 
- - )  dy (x) 

ll~oll 
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Thus, if (X n) is a PSH(E)-martingale, with X ° = x o, we have 

EEIIXnII3 _> Ilxoll + IlXolIEEh( 
llx n - Xoll )] 
llxoll 

The conditional version of this implies that if (Xn) is a PSH(E)-mar- 

tingale with respect to the o-algebras (Fn), and if n > m, then 

ltx n - Xmll ) 
E[llXnll I F m] 2 llXml I + IIXmlIE [h(- I F ] 

ilXmll m 

Integrating this, we get 

EEIIXmlI] e E [llXmll3 + E EIIXmllh( ilx n- Xmll) 3 . 

IIXmll 

Now (Xn)~= 0 is a PSH(E)-martingale, and II'll is plurisubharmonic, so 

(llXnll) n=o is a submartingale, so it converges a.s., and E[IIXnl I ] 

increases. Thus, as n and m increase without bound, we see that 

E[IlXnl I ] - E[IIXml [ ] ÷ 0 

so that 

]IXn- Xml[)] + 0 . 
E[IIXnl I h( 

[IXml[ 

(1IX n - Xml 1 
Thus llXnll h ) converges to zero in probability. But llXnH 

JlXmTJ 

Llx - Xmll 
converges a.s., so h( n ) converges to zero in probability (on 

ll×mll 

the set where llXnl I does not converge to zero), so llXn - Xml I con- 

verges to zero in probability. But (X n) is a martingale, so in fact 

it converges a.e. 
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3. Integrable function spaces. 

An interesting example of a space with uniformly plurisubharmonic norm is 

the space LI(p), where (~,F,p) is a measure space. The first case is 

the one-dimensional space {. The complex number 1 is the typical point 

on the surface of the unit ball. The function 

1 t 2 
h(t) - 16 l+t 

satisfies h(t) > 0 for t > 0. The function 

~(z) = l(loglzl + Rez - i) 

is subharmonic on ~. It is an elementary exercise to verify that 

¢(zl ~ Izl - 1-h(Iz- in) 

for all z e ~. So by Proposition 2.2, the absolute value I" I is "uni- 

formly subharmonic". 

So, if y is a probability measure on ~ with y ~ 1 [PSH(~)], we have 

zld~(z) >i + I h(lz - ll)dY(z)- 

More generally, if z ° is any complex number, and z ° [PSH(¢) ], then 

<*> Izl d~<z) ~ lZol + 1zol h( )d~<z> 
Izol 

In order to extend to function spaces Ll(~), there are two possibili- 

with fo £ LI(v)' llfoll = i, and reduce to the ties. One is to start 

case f > 0. Then 
o 

¢(f) = iI[fo(logaf ] - loglfol) + Ref - Refo]d~ 

is plurisubharmonic on LI(D) and satisfies 
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~(f) _< llfll- 1 - h(11f- foll) • 

The other possibility is to start with y on LI(~)' Y ~ fo' then "dis- 

integrate" it as (y~)~ ~ ~ , where y~ ~ fo(~) for almost all ~. Then 

integrate the inequality (*) over ~. The details are omitted. 

4. Is there a complex Radon-Nikodym property? 

For real Banach spaces, uniform convexity implies a martingale convergence 

theorem. But uniform convexity is a very strong condition; the condition 

that is both necessary and sufficient for martingale convergence (the 

Radon-Nikodym property) is interesting in its own right. This section 

contains some suggestions for a corresponding complex notion. However, 

the question is not answered here. 

Let E be a complex Banach space. Under what conditions does every L l- 

bounded PSH(E)-martingale converge? Is there a criterion like dentability 

(cf. [7, p. 133]), or a vector measure criterion (cf. [7, p. 127])? If 

C is a bounded subset of E, under what conditions does every PSH(E)- 

martingale with values in C converge? If C is open, it might be 

reasonable to consider PSH(C)-martingales, that is, sequences (X n) such 

that (~(Xn)) is a submartingale for every plurisubharmonic function 

defined on C. 

Representability in the sense used here (~ ~ x[PSH(E)]) is more diffi- 

cult to manage than the real version. This is illustrated in the fol- 

lowing. The notation C E , where C is a set and s > 0, will signify 

the E-neighborhood {x c E : dist(x,C)<s} of C. 

4.1 PROPOSITION. Let C be a Borel subset of the separable Banach space 

E, and let x e C. Then (i) => (2) => (3) <=> (4) ~ (5): 
o 

(i) There is a probability measure D on C with ~~x [PSH(E) ]; 
o 

(2) There is no function @ e PSH(E) with ~_<0 on C but ~(Xo)>0; 

(3) There is no function ~ e PSH(E) with ~(x) < dist(x,C) for all 

x E E and ~(Xo)>0; 

n with Xo=X (4) For any c>0, there is no analytic martingale (Xk)k= 0 o 

and E[dist (Xn,C) ]< E ; 
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(5) For any c,~O0 , there is a probability measure p ~ Xo[PSH(E)] 

with ~(Cs) > 1 - ~'. 

Proof. (i) => (2). If ~ e PSH(E) and ~ < 0 on 

I E~(x) d~(x) = Ic~(X) d~(x) ~ o. 

(2) => (3). If x • C, then dist(x,C) = O. 

C, then ~(Xo) 

(3) => (4). Let ~o(X) = dist(x,C). Let ~ be the largest plurisubhar- 

monic function ! 4o By assumption, ~(Xo) E 0. If the sequence ~n 

is defined as in Lemma 2.1, then there is n so that ~n(Xo) < ~ . 

n = x and Therefore, there is an analytic martingale (Xk)k= ° with X ° o 

E[~o(X n) ] < E . 

(4) => (3) is similar. 

n = x and (4) => (5). Choose an analytic martingale (Xk)k= ° with X ° o 

E[dist(Xn,C)]<sE'. Let p be the distribution of X n, so p(A)=P[Xn•A] 

for Borel sets A. Then p(C E) = P[d(Xn,C)<e]> 1 - e ~. 

I do not know whether the conditions are equivalent under reasonable 

circumstances (such as C compact or C convex). 

Martingale convergence leads to properties that resemble dentability. 

Here is one of the simplest such properties. (If "plurisubharmonic" is 

replaced by "convex", the conclusion would be that U is dentable.) 

4.2 PROPOSITION. Let E be a separable Banach space. Suppose every 

Ll-bounded PSH(E)-martingale converges a.s. Let U be the open unit 

ball in E, and let e > 0. Then there is a plurisubharmonic function 

so that the set {x • U : ~(x) > 0} is nonempty and has diameter less 

than e. 

Proof. Suppose there is e > 0 so that if ~ is any plurisubharmonic 

function and ~(x) > 0 somewhere on U, then diam {x • U : ~(x)>0}> ~. 

We will construct a nonconvergent PSH(E)-martingale. 

The probability space will be ~ = [0,i] ~ with P the product Lebesgue 
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measure, and F the o-algebra determined by the first n coordinates in 
n 

~.  ( I n  f a c t  [ 0 , 1 ]  m a p s  m e a s u r a b l y  o n t o  a n y  c o m p l e t e  s e p a r a b l e  m e t r i c  

space, such as E, so this choice is unimportant.) Let a n = 1 - 2 -n. 

There will be constructed sets a ~ F with P[a ] = 2 -1 + ~(n+l) and r n n n 

r a n d o m  v a r i a b l e s  X n w i t h  E [ d i s t ( X n , a n _ l U ) l  ~ ]<2  - ( 2 n + 2 )  , a n d  
n 

P{~ • an: llXn(~) - Xn_l(W)II < g/8} < s-12 -(2n-l) 

Let X ° = 0, a ° = a. Suppose X n has been constructed with E[dist(X n, 

an_iU)l a ] < 2 -(2n+2) Then P{w e ~ :IIXn(W)II > a } < 2 -(n+2) since 
n n n 

= . _ 2 -1 
a n an_ 1 + 2 -n Choose 9n+l ~ ~n n {IlXnl I < a n } with P[an+ I] = + 

2 -(n+2) . On a \ an+ 1 , let Xn+ 1 = X n. On an+ 1 , proceed as follows. 

Suppose Xn(~) = x, where Ilxll s a n . Let D = {Y: fly - xll < ~/4}, so 

that diam(anU n D) < 2 e/4, and hence diem (U n anlD) < saul/2 s ~ • 

Thus if ~ • PSH(E) is ~ 0 on anU \ D, then } ~ 0 on anU, so ~(x) 

0. By Proposition 5, (2) = (47, there is a random variable Y repre- 

senting x [PSH(E) ] with E Mist(Y, anU \D) ] < 2 -(2n+4) Thus E[dist 

(Y,anU)] < 2 -(2n+4) and P[IIY - xll < E/8] < (8/e)2 -(2n+4) = 2-(2n-l)/g. 

The next step Xn+ 1 will be chosen so that the conditional distribution, 

given X n : x, is the distribution of Y. (These Y's should be chosen 

to depend measurably on x using the Yankov-von Neumann selection theo- 

rem.) So we get Xn+ 1 with Xn+ 1 = X n on a \ an+ 1 , and 

E[dist(Xn+l,anU)l~n+l] < 2 -(2n+4) and P{w • an+l:llXn+l(~) - Xn(~) II < 

~8} < 2-(2n-l)/s . This completes the recursive construction of (Xn). 

Now the PSH(E)-martingale (X n) is Ll-bounded, since 

n-i 

E[IIXnl I ] : E[ k:0Z IIXkl Ilak \ ak+l + IIXnlIlan ] 

n 

! 1 + E E[dist(Xk,U) lak] 
k=l 

n -(2k + 2) 
< 1 + Z 2 

k=1 
< 2. 
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Let ~ = n Q . Then P[~ ] = 1/2, but the series E 2-(2n - 2)/~ 
n:l n n= I 

converges, so a.s. on ~ we have l]Xn+l (~) - Xn(~)II ~ s/8 for all but 

finitely many n. Thus (Xn) does not converge a.s. 

Notice that the martingale convergence is an isomorphic property, so the 

conclusion will hold also if U is the unit ball for an equivalent norm. 

I think it is unlikely that the converse is true. Another condition like 

dentability is given in the next result. 

4.3 PROPOSITION. Suppose every Ll-bounded PSH(E)-martingale converges 

a.s. Let ~ ~ PSH(E) satisfy ~(X) ~ alIXII + b, and let e c ~ satisfy 

inf ~<~< sup ~. Then for any s > 0, there is ~ c PSH(E) so that diam 

{x : ~(x) > ~(x)} < s and {x : ~(x) > ~(x), e > ~(x)} ~ 6. 

Proof. Suppose the conclusion is false. Then there is E > 0 such that 

for all ~ e PSH(E), and all x ° e E such that ~(x o) < e, if ~ J ~ on 

{x : llx - Xol I > s/2} then ¢ £ ~ everywhere. 

Fix x O with 6(x o) < e, and let 6 > 0 be so small that ~(x o) + 6 < e. 

Let M = 1 + sup{~(x) : fix - x ]] < s/2}. Define 
o 

~M , if II x - Xoll ! ~/2 

~o(X) b (x) , if fix- Xol ] > E/2 

Now ~ is upper semicontinuous and M > sup{~(x) : llx - Xoll ! ~/2}, it 

follows that ~o is upper semicontinuous. Define ~n as in Lemma 2.1, 

so that ~n decreases to ~ , the largest plurisubharmonic function 

~o" Now ~ ! ~ on {x : llx - Xol I > c/2}, so ~ ~ ~ everywhere. In 

particular, ~(x o) ! ~(Xo). Now there is n so that ~n(Xo) < ~(Xo) + 6, 

n = x and E[~o(Xn)] so there is an anlytic martingale (Xk)k= ° with X ° o 

< ~(x ) + 6 . Thus, 
o 

Eli{ iiXn - Xo[i > s/2} 6(Xn) ] + MP[ fiX n- Xnl ] ~ ¢/2] < ~(x o) + 6 

Since M = 1 + sup{~(x) : llx - Xol [ ! a/2} , we get 
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Eli{ iiXn_ Xol]>s/2}~(Xn)] + Eli{ iiXn_ Xoii<_6/2} (Xn) ] + P[ IIXn- xoli<s/2] 

< _ . . ~ ( x  o) + 6 I 

so that 

E[~(Xn)] + P[ fix n- Xoll i E/2] < 6(x o) + 6 . 

But ~ is plurisubharmonic, so E[~(Xn) ] h 6(Xo). Thus P[IIX n- Xol!&g/2] 

< 6 and E[~(Xn)] - ~(x O) < 6. Therefore E[~n(X ) ] < ~. 

Using this construction, we will construct a martingale (Yn) as before. 

Start at some point x ° with ~(Xo) < ~. Choose 6 n decreasing rapidly 

to 0. We will get lim EE~(Yn)] < ~. If Y is defined, stop if 
n n 

~(Yn ) 2 ~ , otherwise use the above to get Yn+l with 

P[IIYn+ 1 - Yn] 1 > a/2]~(Y n) < ~] > 1 - ~n 

If 6 n converges to 0 fast enough, then lim E[~(Yn)] < ~ , so (Yn) 
n 

is Ll-bounded, and we have P[lim ~(Yn ) < n] > 0, and (Yn) does not con- 
n 

verge there. 

This result, and others like it, may be more useful when stated in terms 

of functions in PSH(U) and PSH(U)-martingales, for some open set U, so 

that the martingale can be constructed inside the set U. 

Here is one further remark. Fix ~ > 0, and U an open bounded set. 

If (X n) is a PSH(U)-martingale, let 

Q((Xn),~) = {w : IIXn+l(~) - Xn(~)II < ~ except for finitely many n}. 

Then let ~n(x) = inf P[Q((Xn),n)], where the inf is over all PSH(U)- 

martingales with X ° = x. The function ~ is formally plurisubharmonic 

on U. Convergence of PSH(U)-martingales is related to whether ~(x)=l 

for all ~ > 0. 
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The paper [5] of Bukhvalov and Danilevich has recently been pointed out 

to me. It is concerned with the "analytic Radon-Nikodym property" for 

a complex Banach space E. It is characterized by the existence of 

boundary values for E-valued HP-functions. It would be interesting to 

know whether there is a connection between the analytic Radon-Nikodym 

property and topics of this paper. 
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